Inspired by an Ancient Light Trick, “Flat Magic Window” Technology Could Enable a New Type of 3D Display

Liquid Crystals Create Magic Windows

Researchers have used liquid crystals to create magic windows that produce a hidden image when light shines on them. Credit: Felix Hufnagel, University of Ottawa

Researchers Create Flat Magic Window With Liquid Crystals

For the first time, scientists empolyed liquid crystals to construct a flat magic window — a transparent device that produces a hidden image when light shines on it. The technology represents a novel twist on a very old light trick.

Thousands of years ago, artisans in China and Japan made bronze mirrors that looked like regular flat mirrors while viewing one’s reflection but generated another image when illuminated by direct sunlight. It took scientists until the early 20th century to figure out that these devices work because an image cast into the back of the mirror creates small surface variations that cause the image to form – and it took engineers until now to apply the same principle to liquid crystals for high-tech displays.

“The magic window we created appears perfectly flat to the naked eye but, in fact, has slight variations that create an image in response to light,” said research team leader Felix Hufnagel from the University of Ottawa. “By designing the window to be relatively smooth, the image that is created can be seen over a large range of distances from the window.”

In Optica, Optica Publishing Group’s journal for high-impact research, Hufnagel and colleagues describe the process they developed for creating transparent liquid crystal magic windows that can produce any desired image. The process can also be used to create magic mirrors that reflect, rather than transmit, light to create an image.

Magic Windows Create Hidden Image

The magic windows the researchers created appear perfectly flat to the naked eye but, in fact, have slight variations that create an image in response to light. The video shows the intensity distribution smoothly evolving from the input beam profile to the desired image pattern. Credit: Felix Hufnagel, University of Ottawa

“Using liquid crystals to make magic windows or mirrors could one day make it possible to create a reconfigurable version for producing dynamic artistic magic windows or movies,” said Hufnagel. “The ability to obtain a long depth of focus could also make the approach useful for 3D displays that produce stable 3D images even when viewed from different distances.”

Creating magic with liquid crystals

Although scientists have understood for decades that the ancient bronze magic mirrors formed images as a result of small surface variations, it was not until 2005 that Michael Berry, a mathematical physicist at the University of Bristol in the UK, derived the mathematical basis for this effect. He later extended this knowledge to develop a theoretical basis for transparent magic windows in addition to reflective magic mirrors. This work inspired Hufnagel and colleagues to create a magic window based on liquid crystals.

Liquid crystals are materials that can flow like a conventional liquid but have molecules that can be oriented like a solid crystal. In the new work, the researchers used a modified version of a well-known fabrication process that produces a specific liquid crystal pattern that allows a desired image to be created when illuminated.

They used a Pancharatnam-Berry Optical Element (PBOE), which is a liquid crystal device that operates under a well-known principle called the Pancharatnam-Berry phase. By changing the orientation of liquid crystal molecules in this device, the researchers could alter the properties of the light as it travels through the device on a pixel-by-pixel basis.

Stable images over multiple distances

“On a conceptual level, the theory developed by Berry was instrumental in determining how these liquid crystals must be oriented to create an image that is stable over a large distance,” said Hufnagel. “Our use of flat optical elements and a liquid crystal pattern with gentle variations prescribed by Berry’s Laplacian image theory allows the magic windows to appear normal, or flat, when one looks through them.”

After fabricating a magic mirror and window, the researchers used a camera to measure the light intensity patterns produced by both devices. When illuminated with a laser beam, both the mirror and window produced a visible image that remained stable even as the distance between the camera and the mirror or window changed. The researchers also showed that the devices created images when illuminated with an LED light source, which would be more practical to use in real-life applications.

The researchers are now working to use their fabrication approach to create quantum magic plates. For example, two of these plates could create entangled images which one could use to study new quantum imaging protocols. They are also exploring the possibility of fabricating magic windows using approaches other than liquid crystals. For instance, using dielectric metasurfaces to make a magic window device could reduce its footprint while increasing bandwidth.

Reference: “Flat Magic Window” by Felix Hufnagel, Alessio D’Errico, Hugo Larocque, Fatimah Alsaiari, Jeremy Upham and Ebrahim Karimi, 5 May 2022, Optica.
DOI: 10.1364/OPTICA.454293

Next Post

social necessity or business as usual?

Thu May 19 , 2022
Before attempting to provide a response to the question posed about what could be a possible digitalisation agenda to guarantee the Human Right to education, and to enter into the specific subject of the relationship between digital technologies and education, it is necessary to outline the coordinates of the structure […]
social necessity or business as usual?

You May Like